Nanocomposites and nanomaterials

Mechanical stress limits of nanocomposites based on multiwall carbon nanotubes and "KERN-DP" anisotropy automated system

Y.A. Onanko, G.T. Prodayvoda, S.A. Vyzhva, A.P. Onanko, M.P. Kulish, O.P. Dmytrenko, A.Y. Kolendo, N.V.Kutsevol

Taras Shevchenko Kyiv national university, Volodymyrs'ka str., 64, Kyiv-01601, Ukraine.

onanko@univ.kiev.ua

Even rather small strain can collect up in nanocomposites based on multiwall carbon nanotubes (MWCNT), essentially changing their mechanical characteristics. For measuring diagram $\sigma - \epsilon$ the modernizing machine "ALATOO" (IMASH-20-75) was used. The diagram of strain – deformation $\sigma - \epsilon$ of nanocomposite based on MWCNT 0,5% + polypropylene is represented on fig. 1.

Fig. 1. Diagram of strain – deformation $\sigma - \epsilon$ of nanocomposite based on multiwall carbon nanotubes 0,5% + polypropylene.

For MWCNT 0,5% + polypropylene the elastic module $E \approx 1,262$ GPa, elasticity limit $\sigma_E \approx 21,15$ MPa, inelasticity limit $\sigma_{0.2} \approx 28,37$ MPa were. For MWCNT 5% + polypropylene the elastic module $E \approx 1,623$ GPa, elasticity limit $\sigma_E \approx 20,83$ MPa, inelasticity limit $\sigma_{0.2} \approx 30,72$ MPa, ultimate stress limit $\sigma_S \approx 40,09$ MPa were determined. For MWCNT 0,1% + polypropylene the elastic module $E \approx 0,8942$ GPa, elasticity limit $\sigma_E \approx 18,78$ MPa, inelasticity limit $\sigma_{0.2} \approx 21,19$ MPa were determined.